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Optimal Distribution of Passive Sensors
for Underwater Detection

JONG-SEN LEE

Operation's Research Group
Mathematics and Information Sciences Division

Abstract: This report considers an operations research problem concerned with the
distribution of passive detection devices for submarine detection over an operational
area. The number and quality of sensors are parameters to be chosen to minimize a cer-
tain cost function subject to the constraint that the total probability of detection over the
area is greater than a prescribed value. General optimization techniques are employed
to solve this mathematical programming problem. It is found that the optimal solution
can be easily obtained graphically without complicated computations.

This report represents a preliminary study of the overall problem involved. How-
ever, it is also intended to provide a framework for further research and analysis of this
naval decision-and-planning problem.

INTRODUCTION

In the planning and designing stage of an antisubmarine warfare (ASW) project, an important problem
which is frequently encountered is to select underwater sensors in the most economical way to achieve de-
tection for a certain operational area. This report attacks this problem by using the techniques of mathe-
matical analysis. A simple statistical detection model is adopted here. Based on this model, a mathematical
programming problem hiformulated and solved analytically and graphically. It is believed that this simple
model can be extended to cover the realistic situation. This report is not complete in its coverage of the
problem treated. Rather, it is intended to provide a framework for further analysis.

In the development of the methods to be described herein, the detection system is assumed to consist of
passive acoustic detectors scattered over large ocean areas through which a submarine target is passing. All
these detectors are assumed to be identical and are operated independently. For simplicity the detectors
are assumed to be randomly distributed. However, this assumption is not as restrictive as it appears. Spe-
cifically, it has been shown [1] that a random, uniform distribution of detector locations in the field pro-
vides essentially the same statistical performance as a regularly spaced distribution.

This report depends on an earlier technical report [I] of Arthur D. Little, Inc. However, to make the
present work self-contained, a brief outline of certain background in probability detection laws is contained
in the second section. The main results are discussed in the third section, where the optimization problem
is formulated and solved by applying the general principle of mathematical programming.

BACKGROUND

In this section the detection probability is briefly reviewed for a noise-emitting target (or submarine) in
an exposure to be detected by a single passive listening device. Then the detection probability is discussed

NRL Problem No. B01-10; Project No. RR 003-02-41-6152. This is a final report on one phase of the problem; work
is continuing on other phases. Manuscript submitted December 31, 1970.
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for a group of identical but independently operated listening devices in a randomly distributed field. "De-
tection" means a "yes" or "no" answer to the question of whether the device has detected a given target.
A "no" answer means no detection when the target is actually presented. A "yes" answer in the absence of

a target will not be considered (i.e., false alarms will be neglected).

Detection Probability Laws

The detectors are assumed to be omnidirectional. For a certain sensor the probability of detection is
taken to be a function of distance only. Two types of detection probability laws, the exponential detection
law and normal detection law, are considered and are described below.

Exponential detection loua'. The probability of detecting a target at a distance R from the detector is
given by

P(R) - R2 /C2 (1)

where C is a parameter which represents the sensitivity of the detector. If R. is the range where the detec-

tion probability is 0.5, then

C n R2 (2)In2

Note that Ro can be used to indicate the quality (sensitivity) of the detector.

Normal detection Iauu'. The detection probability is derived from the well-known sonar equation

assumpting a Gaussian distribution. A detailed derivation is given in [I]. The probability of detection at a

distance R is given by

( Ion R
P(R)4 - ( log Rj) (3)

where

e(y)= 1 fre e-y 2 /2 dy (4)

and n = the spreading constant; for example n = 1 gives cylindrical spreading and n = 2 gives spherical

spreading. a is a parameter representing the variance of the difference between the sound level of the target
and the detection level of the sensor.

Note that the exponential law characterizes a rather sharply decreasing detection probability with in-
creasing range than the normal detection probability law. However, the exponential detection law is a handy
approximation because of its mathematical convenience. In some cases of interest it appears to be a rea-

sonably good approximation.
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Coverage Area

When a single detector is located in the interior of a large plane area Z of interest and a target is exposed

at a random point in this area, the total detection probability, i.e., the average detection probability over

the area Z, can be expressed in polar coordinates as

D)=iJ P(R,O)Rz dOdR,
z~~~

(5)

where P(R,O) is the detection probability at (RO). If we assume that P(RO) is negligible outside of Z, then-~ if21Tr
JD= 0o 0

P(R,O)R dOdR A
_ _ _ _ _ =_ _A
Z- '

where

A f | P(RO)R dOdR

00
A is called the coverage area.

Applying the exponential detection law,

A = 27r f P(R)R dR

2
7rR;

In 2

Applying the normal detection law,

A = - rf j.-(1On/o)log(R/Ro) e-Y 2/2 dydR

o 00

(6)

(7)

After evaluating the integration

A= 7rR02e2a2; a =- In 10 (8)

2
As can be seen in Eqs. (7) and (8), the coverage area for both detection laws is proportional to R 0. For the

convenience of later development, define

2= A= (9) 

:2:3 C-1
r-
:P.

(9)
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where

In 2 if the exponential law is applied

(10)

2a2
ire if the normal detection law is applied.

Random Field

The total detection probability over a large area Z for a single detector is given by A/Z. The detection

problem that involves a whole field of detectors scattered over the area Z will now be considered. Since the

mathematical analysis of a regular, evenly spaced field is much more complicated than that of randomly dis-

tributed detectors, consider only the case where m identical and independently operated detectors are

scattered randomly (uniformly distributed) in Z. Fortunately, it has been shown [I] that these two distri-
butions behave very similarly and can be used interchangeably for fields of the same density. Assuming that

detectors are operated independently, the probability that exactly k detectors will detect the presence of a
target is

p ( Z)(A)k ( Z )m- (11)

and the expected number of detections is l ' ' a .,

Au = m-Z Ap tt, ~ 44Xtt-' ^4 &§1

where p 4 m/Z represents the density (detectors per unit area).
If m is large and A/Z is small, as is usually the case of interest here, the binominal distribution

can be approximated by a Poisson distribution

k CY

Pk = k! (12)

Therefore, the probability of at least one detection is

P = I - Po = I -

or

P =-e-AP (13)

where A is given by Eq. (9).

Now the optimization problem can be formulated. Equations (9) and (13) are key equations of this
section. -

4
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OPTIMIZATION PROBLEM

The problem of interest is to find the amount and quality of identical detectors for submarine detection
in the area Z such that the total cost of detectors is minimized yet the probability of detection P (at least
one detection) is greater than or equal to a prescribed number Ps, for instance Ps = 0.9. The quality of
detectors is represented by the parameter R 0 , which is the range where the detection probability of a single
detector is 0.5. Intuitively, the larger Ro is, the more sensitive and expensive the detector is. It is reason-
able to assume that the cost v(RO) of a single sensor is a smooth and monotonically increasing function of
R0 . The solution for a general v(RO) is obtained by applying the techniques of nonlinear programming.
For ease of understanding, consider first the following three cases (refer to Fig. 1), where for
the convenience of later development v is a function of R2

0,

0

0
U,
Z
WU,)

02

Fig. 1-Sensor cost v as a function of R2 for three cases:
2

Case 1: v is linear in R2

Case 2: v is a convex function of R 0

Case 3: v is a concave function of Ro0

In Fig. 1 Ro and R denote the lower and upper bounds of Ro. The lower bound R0 stems from the fact
that a detector must perform the operations of detection and must observe the detection probability law.
The upper bound R20 is imposed by the state of the art of electronic technology and environmentally con-
strained by the target's sound level and background noise level. First these three cases will be considered to
gain insight into the problem, and then a general solution will be given. It should be noted that Case 3 is
more realistic than the other two.

Formulation of the Problem

The optimization problem is to choose Ro and m (or p) to minimize

J = mv(R') = Zpv(Rg)

c:

5 <ra
r-.
:Z.

<.n~

M.

I

I

I

I

I

I

I

I

(14)
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subject to the inequality constraints:

P= -e-AP>Ps (15)

and

R' < R' < (16)

Among the general techniques for solving the optimization problem with inequality constraints are the

Lagrange-multiplier method and the penalty-function method [21 . This specific problem, however, can be

solved graphically for clarity.

Solutions for Three Special Cases

Case 1: v is linear in R 0

Let v(RO) = yRO, where My is a positive constant. Then

J = yZpRO, (17)

and using Eq. (9), the constraints are converted into

2
P = 1 - e-9ROP > PS

R~p > In( (18)

and

R2 6 R2 < R2 (19)-0 0-- 0

The optimal solution (p*, (R2)*) must be located in the admissible region defined by Eqs. (18) and (19) in

the (pRo) plane (see Fig. 2).
The contours of constant J (refer to Eq. (17)) are also plotted in Fig. 2. It is seen that J is decreasing as

the contour moves toward the boundary of P = Ps. Hence, the optimal solution is anywhere on the bound-
ary of P = Ps, for R2 between R 2 and R2. In other words

0 !30 R 0 .Iotewrd

(R2)* p* In 1

The optimal cost is given by

J*=oYZ In 1

Case 2: v(R2) is a convex function of R2.

For simplicity consider v(RO) = y/it Equations (18) and (19) are still applicable to this simple case,

but the cost function becomes

6
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N

7

ADMISSIBLE REGION

' J2

/l~J

DETECTOR DENSITY p

Fig. 2-Admissible region and contours of constant cost J (J1 > J2 )

for v linear in R2 (Case 1)

J = yZpVRT

The contours of constant J are easily plotted together with the admissible region on the (pR2) plane in
Fig. 3. It is directly seen that the optimal solution occurs at the upper corner, i.e., the intersection of
P = Ps and R 2 = p2, This implies that the optimal solution is to use high-quality detectors at low density, or

R0

('JO

a: ADMISSIBLE REGION

\~ZZZZZZZZLZL___ d/////////
i s = ~ s

a,
C:r-
c:.

401,

_.

17t1

DETECTOR DENSITY p

Fig. 3-Admissible region and contours of constant cost J (J1 > J2 )
when v is a convex function of R2 (Case 2)

Ro 2

R 2 �_ - - _ _ _ _ _ Z
0

Ro2 _ -
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P* In0 0'

and

J* =7- (1n
O3R0 k-ps

Case 3: v(R2) is a concave function of R2
'-e :(0' 0. 2 2

As in Case 2, consider a simple concave and monotonically increasing function of Ro v(R)y= R'.

The solution is shown in Fig. 4 following the same argument as in Case 2. The optimal solution is at the

lower corner, i.e., the intersection of P Ps and R2= R. This means that the optimal solution is to use

low-quality sensors at high density, or

2 * =R2

0 0'
- p~o*\1 __ P

and

Solutions for the General Case

The preceding three cases show that the optimal solution depends on v(R2). It is proved in the appendix
2

for a general case that the optimal solution can be obtained directly from the v vs R0 curve. The following

results are derived in the appendix under the reasonable assumption that v(Ro) is a positive, smooth, and

monotonically increasing function of Ro
(a) The locally optimal solution occurs at the upper corner, that is,

R2*=R =2, in ) (20)

if and only if

v(F') _ dv(Rg)
v(R2) d<) (21)

K2 dK2

(b) The locally optimal solution is at the lower corner, that is,

12* =1(2 Ii (22)R0 p=R ..L..lni-

if and only if

W < .dv0 (23)
RdR 2

-0 -0

8
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so 7 777777

trWt ADMISSIBLE REGION

R2 Z

DETECTOR DENSITY p

Fig. 4-Admissible region and contours of constant cost J (J1 > J 2 )

when v is a concave function of R2 (Case 3)

(c) The locally optimal solution is on the P = PI, boundary, that is,

(R 2)* = (R2),' p* I I(2) n (1_p(24)

if and only if

v((Rg)') _ dv((RgY) (25)

(R12)' d(R2)'

and

d2v((R 2)') (26)>0,
d( R2)2

where &o < (Ro) < Ro -
The three criteria can be easily applied graphically as illustrated in the following examples.
Example 1. Given a v(R2) vs R2 curve as in Fig. 5,

it is easily seen that

dv(RO)
tan a = 2-

dR2
d0

and

v(R2)
tan =-

0
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R2 2 2 

0 ~~~ ~ ~~~~R o2 -
0~~~~~~~

Fig. 5-Example 1

Since 0 > a, condition (21) is satisfied. The optimal solution is at the upper corner. But conditions (23)
and (25) are not satisfied.

Example 2. For the curve given in Fig. 6,

-§2
R0

Fig. 6-Example 2

conditions, (21), and (23), are satisfied, since 01 >a°, and 03 <a 3 . However (R) 'is not a local minimum

solution, since Equation (26) is not satisfied at (R2)'. This means that there are two locally optimal points.
The absolute optimal solution is found by comparing the optimal cost at these two locally optimal points.

Example 3. For a certain ocean operational area the following cost curve is obtained. The cost per sen-

sor includes purchase cost, installation cost and maintenance cost for a period of several years. The cost

curve is shown in Figure 7.

Applying the three criteria the minimum solution, (R12)* = 13, is easily found. The number of sensors

to be distributed can be obtained from Equation (24).
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I

2 4 6 8 10 12 (R2).
0

16 18 20

R02

Fig. 7-Example 3

DISCUSSION

Generally the cost function J is a nonlinear function of p and Ro' say f(pRo), instead of being linear in
p. This occurs when some of the important factors, such as installation cost, reliability, and cost of pro-
cessing false alarms are taken into consideration. No general technique is available to reach a solution in
closed form. A numerical solution can be obtained by using techniques such as the steepest-descent method

and the conjugate-gradient method [3].
In the submarine tracking problem, it is preferable to distribute lower quality detectors at a higher den-

sity than to distribute higher quality detectors at a lower density. The reason is that the target position is

estimated by the first moment of the positions of those detectors which simultaneously detect the presence
of the submarine. If low-quality detectors are distributed at high density, only those detectors which are
close to the target make detections. Hence, a better estimation of target position will result. Therefore,
in realistic situation, the tracking ability should be considered as another constraint in the problem of
optimization.

Although we have assumed that detectors are distributed randomly in the area Z, practical installation

can be made by arranging the detectors in a square grid (i.e., regular field). It has been mentioned that com-
puter simulation results prove that the statistical performances of these two fields of distribution show only
modest differences.

The techniques used in this section can be easily extended to the case of a target moving through the
operational area.

11
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APPENDIX

LOCAL OPTIMAL SOLUTION FOR THE GENERAL CASE

This appendix derives the three criteria for locating the optimal solution in the (p, R2) plane. For
clarity, the problem is restated:

Minimize

J = Zpv(R2) (Al)

with

R2 p>1 Inlps (A2)

and

-R2 < R2 6 'o X (A3)

where v(R 2 ) is a positive, smooth, and monotonically increasing function of R12
0 01

THEOREM. (a) The upper corner is a local minimum solution or

(P*,~~ ~ (i 2) In)

if and only if

vR > dvR) (A4)
R2 dR 2

0 0

(b) The lower corner is a local minimum solution or

(,(R2))(,g In (1_ R) o

if and only if
-g) dv(< g) (A5)

R2 dR 2

-0 -0

(c) The local minimum solution is on the P = P5 boundary, or

~*, (R 2)*~ (' In ) 2)

if and only if v2 = 2 (A6)

(R(2)' d(Rg)'

12
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and
d2v ((Rg)')

d(R) 2 

Proof A point on the boundary of the admissible region is a local optimal solution if and only if the
gradient of J is oriented such that a decrease in J can occur only by violating the constraints. The proofs of

parts (a), (b), and (c) follow directly from this argument. Refer to Fig. Al.
For (a) the upper corner is the local optimal solution if and only if VJ points toward the direction of (.

However, since v(R2) is positive and monotonically increasing, VJ must point toward the first quadrant,
orp < w, where

as

aRo
tan lp =a

ap

and
tan P2

0

Thus

p < co 6 tan so < tan X

dv(Rg)

dR2

v(Rg) Ro

~ Equation (A4).
-2 ~ ~ ~ ~ ~ ~ -

('JO ., A
R~~~~~~~~ 2 iff ///// 

VPV

N O 0V

DETECTOR DENSITY p

Fig. Al-Graphical proof of general solution

13
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For (b) the proof is analogous to that of (a). From Fig. Al it immediately follows that

tan p > tan X

or

(R2 dR 2

-0 -0

For (c), (p (R2g) ')is the local optimal solution if and only if the gradient of J and the gradient of P
point in the same direction, and (p, (R2)') is not a local maximum solution, that is

v((Rg)') dv((R2)')

(R2)' d(R2)'

and

d2 v( (R2)')

d(R2)2
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